Quantifier elimination in valued Ore modules

نویسندگان

  • Luc Bélair
  • Françoise Point
چکیده

We consider valued fields with a distinguished isometry or contractive derivation as valued modules over the Ore ring of difference operators. Under certain assumptions on the residue field, we prove quantifier elimination first in the pure module language, then in that language augmented with a chain of additive subgroups, and finally in a two-sorted language with a valuation map. We apply quantifier elimination to prove that these structures do not have the independence property. MSC: 03C60, 03C10, 16D, 16S36, 12J10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separably Closed Fields and contractive Ore Modules

We consider valued fields with a distinguished contractive map as valued modules over the Ore ring of difference operators. We prove quantifier elimination for separably closed valued fields with the Frobenius map, in the pure module language augmented with functions yielding components for a p-basis and a chain of subgroups indexed by the valuation group.

متن کامل

Quantifier elimination for the theory of algebraically closed valued fields with analytic structure

The theory of algebraically closed non-Archimedean valued fields is proved to eliminate quantifiers in an analytic language similar to the one used by Cluckers, Lipshitz and Robinson. The proof makes use of a uniform parameterized normalization theorem which is also proved in this paper and which has far reaching consequences in the geometry of definable sets. This method of proving quantifier ...

متن کامل

Generalized Taylor formulae, computations in real closed valued fields and quantifier elimination

We use generalized Taylor formulae in order to give some simple constructions in the real closure of an ordered valued field. We deduce a new, simple quantifier elimination algorithm for real closed valued fields and some theorems about constructible subsets of real valuative affine space.

متن کامل

On Logical Characterization of Henselianity

We give some sufficient conditions under which any valued field that admits quantifier elimination in the Macintyre language is henselian. Then, without extra assumptions, we prove that if a valued field of characteristic (0, 0) has a Z-group as its value group and admits quantifier elimination in the main sort of the Denef-Pas style language LRRP then it is henselian. In fact the proof of this...

متن کامل

Arithmetic and Geometric Applications of Quantifier Elimination for Valued Fields

We survey applications of quantifier elimination to number theory and algebraic geometry, focusing on results of the last 15 years. We start with the applications of p-adic quantifier elimination to p-adic integration and the rationality of several Poincar series related to congruences f(x) = 0 modulo a prime power, where f is a polynomial in several variables. We emphasize the importance of p-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Log.

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2010